
Eξploitation Toolkit:

Icarus

George Nicolaou

Glafkos Charalambous

Objectives

• Reveal the architecture behind the Icarus
Library

• Discuss the methodologies used in some of the
modules

• Release beta version of the toolkit (Finally!)

• Get your support

Outline

• Toolkit Architecture

▫ Icarus Disassembly Engine (iDisasm)

▫ ETI Library

• Toolkit Modules

▫ Instruction Finder

▫ Exploitability Analysis

▫ Gadget Finder

• Contribution and Road Ahead

Toolkit Architecture

Icarus Disassembly Engine
(iDisasm)

iDisasm

• Yet another disassembler, why?

▫ Cross platform supported architecture.

▫ Easy maintenance & understanding.

▫ No wild dependencies in Icarus Engine.

• Architecture

▫ A Single structure containing information about
the instruction.

▫ Everything is stored in arrays.

iDisasm

iDisasm

• Architecture
▫ X86, X86_64 ARM

• Instruction Pointer
▫ Location of the instructions

buffer

• VirtualAddress
▫ Actual address in memory

• Instruction
▫ Information about the

instruction

• Prefixes
▫ Prefix Flags

• Mnemonic
▫ Instruction mnemonic

iDisasm

• Category

▫ Instruction category
(CONTROL_TRANSFER,
ARITHMETICAL, etc)

• Opcode

▫ Instruction’s opcode

• ModifiedRegs

▫ Registers that are modified in
this instruction

• InstructionMnemonicName

▫ Instruction name (MOV,
CMP, ADD, JMP)

iDisasm

• Type

▫ High Byte contains the
operand type

 OPERAND_REGISTER

 OPERAND_MEMORY

 Etc

▫ Low 3 bytes contain register
type (overwritten by
architecture)

 TYPE_REG_GENERAL

 TYPE_REG_SPECIAL_0

 etc

iDisasm

• Access

▫ READ/WRITE/READWRITE

• BitSize

▫ The size of the operand

• AddressingSize

▫ The addressing size (when
memory)

• AddrRegister

▫ Addressing register (DS,FS)

• RegValMem

▫ Contains the register/value or
memory information of the
operand

iDisasm

• iDisasm library exports a single function

▫ int disasm(PSDISASM arg);

• Loads the architecture module specified by

▫ arg->Architecture

• Loads the first Opcode Map, recurses through it
and generates information about the instruction

iDisasm

• New modules can be defined by populating the
ArchitectureModules[] array in archs.h

iDisasm

• Conclusions

▫ iDisasm is a crucial module in successfully porting
the Icarus engine in multiple processor platforms.

▫ Next targeted platform is ARMv7

• License

▫ GNU Lesser General Public License v3 (LGPLv3)

Toolkit Architecture

Exploitation Toolkit Icarus Library

ETI Library

• The ETI Library exposes a set of modules/tools for
assisting the development of POC exploit code.

• Architecture Layers
▫ Platform Specific Modules
 Debugger

 Executable file handlers

 Etc

▫ Platform Interfaces
 Various Interfaces (C++)

 Abstract structures and general algorithms

 Linking various platforms together

▫ Platform Independent Modules
 Variety of modules using Platform Interfaces

ETI Library

• Main modules listed for each layer

• Crossed modules are not implemented yet

• Minimal coding requirements for new platforms

ETI Library

• License

▫ GNU General Public License v3

▫ Planning to switch to Lesser at a much later point

Toolkit Modules

Toolkit Modules

• How modules fit into the architecture
▫ Pattern Creator
 Typical cyclic pattern generation
 Multiple sets support

▫ Instruction Finder
 Cross platform design
 Locating instructions in executable memory pages given a

hexadecimal pattern
▫ Exploitability Analysis
 Analyse and report vulnerability information right after

an exception occurs
▫ Gadget Finder
 Locate ROP gadgets in memory
 Parse and populate attribute information for each gadget

Toolkit Modules

Instruction Finder

Instruction Finder

• Generalized architecture

▫ Making use of IMemory to retrieve
pages and module headers

▫ Parsing headers using IExeHandler

▫ Filtering headers using IProtections

• InstructionFinder exposes the
function find_instruction_in_exe
that receives

▫ Int – Process Id.

▫ IProtections – Protections Filter

▫ HexPattern – Compiled Hex
Pattern

▫ vector<Address *> - Vector that
receives found addresses

Toolkit Modules

Exploitability Analysis

Exploitability Analysis

• An “interface” between the
front end and back end

• Provides

▫ Vulnerability Classification

▫ Vulnerability Analysis &
Implementation

• Architecture

▫ Debugs target application

▫ Runs specified vulnerability
modules for providing the
above services.

Exploitability Analysis

• IVulnerability Modules expose 3
functions

▫ check_for_vulnerability()

▫ run_vulnerability_analysis()

▫ run_skeleton_implementation()

• Each function “scores” the
vulnerability on how it can be
(ab)used if possible

• Analysis & Implementation parts
generate a Payload object (one
more complete than the other)

IVulnerability: StackBufferOverflow

• check_for_vulnerability()
▫ Pull the registers of the excepting

thread and check common
patterns against them.

▫ Store any registers that might be
controllable.

• run_vulnerability_analysis()
▫ Run controllable register lookups

▫ Locate overwrite offsets.

▫ Use of a cyclic pattern is not
required.

• run_skeleton_implementation()
▫ Find corrupted bytes.

▫ Locate valid return addresses
based on IProtections filters.

▫ Produce a working Payload object

Use of a cyclic pattern is not required?

• Well yes, assuming that
▫ If the overflow buffer is filled with AAAs or BBBs
▫ And the last RETN instruction did not consume any

bytes (eg RETN 4)

• The technique is relatively simple (assume IA32)
▫ Locate EIP relative to ESP (at location ESP-N)
▫ Check if:

▫ If equal then loop going backwards

PATTERN_WRAPSIZE else we got a matching offset
▫ Works best with a cyclic pattern

Payload Object

• A Payload object contains a linked list that describes
the payload structure.

• Each element in the list has
▫ A type
 PAYLOAD_RANDOM

 PAYLOAD_ADDRESS

 PAYLOAD_ADDRESS_MULTIPLE

 PAYLOAD_CODE

 PAYLOAD_BAD

 PAYLOAD_FIXED

▫ Size
▫ Contents
▫ A set of restricted characters

Payload Object

• Using the Payload object you can construct
something like

• The address element on top can contain all
possible addresses that suit your requirements

RANDOM ADDRESS CODE BAD

1000 4 700

Exploitability Analysis

Demo

Toolkit Modules

Gadget Finder

Gadget Finder

• Gadget finder is responsible for
locating ROP Gadgets in executable
memory addresses

• Two main functions exposed so far

▫ proc_find_rop_gadgets()

▫ proc_find_api_gadgets()

• Resulting gadgets are stored in a
vector containing RopGadget
objects

• Callers can retrieve gadgets by
using

▫ get_found_rop_gadgets()

▫ get_found_api_gadgets()

Gadget Finder

• Gadgets are divided into two main entities

▫ API Gadgets – Gadgets calling library functions

▫ Standard ROP Gadgets – Your standard do
something then return gadgets

• Locating API Gadgets

▫ Apply protection filters

▫ Look for JMP [IAT Address] instructions (FF 25)

▫ Match address with an exported library function

Gadget Finder

• Locating Standard gadgets

▫ Assume the following code:

▫ How many possible usable gadgets can
you identify?

0x10001020 55 PUSH EBP

0x10001021 8B EC MOV EBP, ESP

0x10001023 8B 45 08 MOV EAX, DWORD SS:[EBP+8]

0x10001026 89 41 04 MOV DWORD DS:[ECX+4], EAX

0x10001029 5D POP EBP

0x1000102A C2 04 00 RETN 4

Gadget Finder
0x10001020 55

0x10001021 8B

0x10001022 EC

0x10001023 8B

0x10001024 45

0x10001025 08

0x10001026 89

0x10001027 41

0x10001028 04

0x10001029 5D

0x1000102A C2

0x1000102B 04

0x1000102C 00

RETN 4

POP EBP

MOV DWORD DS:[ECX+4], EAX

MOV EAX, DWORD SS:[EBP+8]

MOV EBP, ESP

PUSH EBP

ADD AL, 5D

INC ECX

Gadget Finder

• Locating Standard Gadgets

1. Apply protection filters

2. Look for RETN instructions (C3, C2, CA, CB)

3. Walk backwards 1 byte at a time and
disassemble instruction (byte-by-byte lookup)

 Verify that instruction is valid.

 Verify that new instruction doesn’t overwrite the
RETN instruction.

4. Repeat for MaxRopSize instructions

5. Attribute RopGadget (Affected regs, category,
type, etc)

Gadget Finder

• Each gadget is attributed a Category as follows

Category Description

GC_MEMORY References a memory location

GC_REGMEMORY References a memory location relative to a register

GC_ASSIGNMENT Assigns a value to an operand

GC_SYSCALL Contains a SYSCALL instruction

GC_MATH Contains mathematical computations

GC_LOGICAL Contains logical computations

GC_CONTROLFLOW Contains control flow instructions

GC_SYSTEMINSTR Contains a privileged instruction

GC_SEGMENT References a segment register

Gadget Finder

• Each gadget is attributed a Type as follows

Type Description

GT_CONTROLFLOW_REG Control flow instruction references register

GT_CONTROLFLOW_MEM Control flow instruction references memory

GT_CONTROLFLOW_REL Control flow instruction is relative branch

GT_ASSIGNS_ZERO Contains instruction that assigns zero to a
register

GT_STRING_MOVE Contains string move operation instruction

GT_STRING_CMP Contains string comparison operation
instruction

… More to come

Gadget Finder

• Locating gadgets using the byte-by-byte lookup
technique results into more usable gadget types

• Using the information populated in each
RopGadget you can essentially

▫ Locate specific gadgets for specific operations
(even programmatically).

▫ Automate the process of ROP Payload generation.

Gadget Finder

Demo

Contribution and Road Ahead

• Contributing to the Icarus Project

▫ Although at early stages ETI can grow to become a
valuable tool for exploit developers

▫ GitHub
(https://github.com/georgenicolaou/icarus)

▫ Discussion forums (soon)

▫ Homepage (soon)

https://github.com/georgenicolaou/icarus

Contribution and Road Ahead

• Who do we need

▫ Cross Platform UI Designers (Qt looks nice)

▫ Android Developers

▫ Various Platform Coders (Linux/UNIX)

▫ Beta testers

▫ People that can pitch us ideas, requests and beers

Contribution and Road Ahead

• Road Ahead

▫ iDisasm Support for multiple architectures

▫ Complete Vulnerability Modules

 Handle all possible cases and automate the process
of exploitation

▫ Spice up ExploitabilityAnalysis module

 Execution Tracing

 Locating vulnerable functions after trigger

▫ Expand on GadgetFinder options

▫ Build-in Fuzzer

▫ Port to Linux and Android

Questions?

